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Abstract

Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a
number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed

along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite

materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with

tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints
have been reported. These joints maintain their mechanical strength up to 1200°C in air. This technology is suitable for the joining

of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic

components damaged in service.

I. Introduction

Ceramic composites are either currently being used or are under active consideration for use in a wide variety of high temperature

applications within the aeronautics, energy, process, nuclear, and transportation industries. Silicon carbide-based ceramics and
fiber reinforced composites are being developed for engine components, radiant heater tubes, heat exchangers, heat recuperators,

and components for land based power generation turbines. The engineering designs require fabrication and manufacturing of

complex shaped parts which are quite expensive. In many instances, it is more economical to build up complex shapes by joining
together simple geometrical shapes. Thus, joining has been recognized as one of the enabling technologies for successful utilization

of silicon carbide-based ceramic and fiber reinforced composite components in high temperature applications. However, the joints

must retain their structural integrity at high temperatures and must have mechanical strength and environmental stability comparable
to the bulk materials. In addition, the joining technique should be robust, practical, and reliable.

Overviews of various joining techniques for ceramics, e.g., mechanical fastening, adhesive bonding, welding, brazing, and

soldering have been provided in various publications [1-8]. The majority of the techniques used today are based on the joining of
monolithic ceramics and fiber reinforced composites with metals and ceramics either by diffusion bonding, metal brazing, brazing

with oxides and oxynitrides, or diffusion welding. Some of these techniques require either high temperatures for processing or hot

pressing. In other instances, the joint use temperatures are lower than the temperature capability of the base ceramics or composites.
The joints produced by brazing techniques can have different thermal expansion coefficients than the parent materials, which

contributes to stress concentration in the joint area. Normally, the use temperatures for brazed joints are limited to -700 °C.

Ceramic joint interlayers have been developed as a means of obtaining high temperature joints. These joint interlayers have

been produced via pre-ceramic polymers, in-situ displacement reactions, and tape casting/reaction bonding techniques [8-10]. Joints

produced by the pre-ceramic polymer approach exhibit significant amounts of porosity, low crystallinity, and poor mechanical
properties. On the other hand, hot pressing or high temperature fixtures are needed for in-situ displacement reactions, diffusion

bonding, and tape casting-reaction bonding techniques [9]. Due to the equipment required, these techniques are not well suited for

joining large or complex shaped components.
Various joint design philosophies and design issues are discussed in this paper, along with an affordable, robust ceramic

joining technology (ARCJoinT). ARCJoinT, which is based on the reaction forming approach, is unique in terms of producing
joints with tailorable microstructures. The formation of joints by this approach is attractive since the thermomechanical properties



ofthejointinterlayercanbetailoredtobeveryclosetothoseofthesiliconcarbidebasematerials.In addition,hightemperature
fixturingisnotneededto holdthepartsattheinfiltrationtemperature.A varietyof siliconcarbide-basedceramicsandfiber
reinforcedcompositeshavebeenjoinedusingthisapproach[11-17].Theroomandhightemperatureflexuralstrengthand
fractographyofceramicjointsarereported.

H. Joint Design Issues

Numerous joint design and testing activities in the past have been related to metal-metal and ceramic-metal systems. For ceramic-

metal systems, various joint designs and design criteria have been established [3, 8]. The designs accommodate a number of factors
including stresses and stress distribution in the joint regions, which are dependent upon joint configuration and chemical and

thermal properties mismatch between the joint and substrate materials. Determination of the mechanical properties of the joint is

critical to designers. A wide variety of testing methods [3, 8] have been used to determine the tensile strength, peel strength, flexural

strength, shear strength, and compressive strength of the ceramic-metal joints. However, unlike the joining technology for ceramic-
metal systems, joint design and testing is not well developed for ceramic-ceramic systems. If the ceramic materials have to be used

at high temperatures under extreme operating conditions, a number of joint design issues have to be considered along with high

temperature thermal and environmental stability of the joint and the joint-substrate interface. One such design and testing issue is

the determination of the stress state at the joint, namely, tensile, shear, or a combination of tensile and shear stresses under operating
conditions. In addition, the design of joints must take into account the response of joints to temperature changes.

HI. Fab_cafion

A flow diagram of the affordable, robust ceramic joining technology (ARC JoinT) is given in Fig. 1. The joining process begins

with the application of a carbonaceous mixture in the joint area, holding the items to be joined in a fixture, and curing at 110-120°C

for 10 to 20 minutes. This step fastens the pieces together. Then, silicon or a silicon-alloy in tape, paste, or slurry form is applied

around the joint region and heated to1250-1425°C (depending on the type of infiltrant) for 10-15 minutes. The molten silicon or

silicon- refractory metal alloy reacts with carbon to form silicon carbide with controllable amounts of silicon and other phases as

determined by the alloy composition. Joint thickness can be readily controlled in this process by controlling the properties of the
carbonaceous paste and applied fixturing force.

ApplyCarbonaceous Mixture 1

to Joint Areas

Cure at 110-120"C
for 10 to 20 minutes

Apply Silicon or Silicon-

(paste, tape, or slurry)
Heat at 1250-1425°C

for 10 to 15 minutes

Affordable and Robust
Ceramic Joints

with Tailorable Properties

Fig. 1 : Schematic of ARCJoinT process for joining silicon carbide-based materials.

A wide variety of silicon carbide-based ceramics and ceramic matrix composites, consisting of different sizes and shapes, have
been joined using this technology. They include reaction-bonded silicon carbide (SiC+Si), reaction-formed silicon carbide

(SiC+Si), and sintered silicon carbide. Microstructural characterization and mechanical properties of joints in these materials have
been reported in other publications [11-17]. A wide variety of carbon and silicon carbide fiber reinforced silicon carbide matrix

composites (C/SiC and SiC/SiC) have been joined, as shown in Fig. 2. After joining, the microstructure and mechanical properties
of joints were characterized at different temperatures.



Fig.2:Photographshowingcomponentsfabricatedbyjoiningfiber reinforced silicon carbide matrix composite sub-elements.

The Enhanced SiC/SiC composites used in this study were obtained from Dupont Lanxide Composites, Inc., Newark, DE.

These composites were fabricated with plain weave SiC (CG Nicalon) fiber with a thin pyrolytic carbon interface. The SiC matrix

was deposited via a chemical vapor infiltration process. For the preparation of specimens for mechanical testing, composite bars of
4" x 1" x 0.1" dimensions were used. As-fabricated surfaces were cleaned in acetone and dried before joining. The composite

specimens were aligned to form butt joints.

IV. Characterization

A scanning electron micrograph of a reaction formed joint-CVI SiC/SiC composite interface is shown in Fig. 3. The joint

thickness is about 125 -130 grn. Detailed microstructural examination indicated some residual porosity was present in the joint.
There is no visually detectable damage to the fibers. This micrograph also shows a significant amount of porosity in the

composite matrix.

Fig. 3 : Microstructure of reaction formed joint-CVI SiC/SiC interface.

Flexure test specimens were machined from the joined bars, with joints centrally located. Four-point flexural strength testing
was carried out using the MIL-STD-1942 (MR) configuration B specimens with 20 mm inner and 40 mm outer spans. Flexure

tests were conducted at 25°C, 800°C, and 1200°C in air. Four specimens were tested at each temperature. After testing, fracture

surfaces were examined by optical and scanning electron microscopy to identify the failure origins.

A summary of flexural strengths of the reaction formed joints in CVI SiC/SiC composite materials is shown in Fig. 4. The

average four point flexural strengths of joined specimens at 25, 800, and 1200°C were 65+_5, 66:1.-9, and 59_+7 MPa,

respectively. In the joined CVI SiC/SiC materials, fracture initiates in the joint region at the joint-composite interface. Porosity
and small amounts of unreacted carbon have been observed in certain areas of the joints. In addition to microstructural

inhomogeneities in the joint regions, the mechanical strength of the joints is greatly influenced by delamination and failure at



thefiber-matrix interface within the composite, which is weak by design. An example of the delamination and interface failure

is shown in Figs. 5 (a) and (b), which are the fractographs of joined specimens tested at 800°C. In these micrographs, one side
of the joint pulled away from the weak fiber-matrix interface. This problem can be alleviated by using 3-D architectures or

designing the joints in lap, scarf, or other configurations. Efforts are underway to fabricate joints with more homogeneous

microstructure and composition, vary the joint configuration and thickness, and evaluate the effect of silicon-refractory metal
alloy infiltrants on the microstructure and mechanical properties of joints.

n

c

¢,o

-i
x
_o
1L

100

90

80

70

6O

5O

4o

3O
25 800 1200

Test Temperature (*C)

Fig. 4 : Flexural strength of joined CVI SiC/SiC composites at low and high temperatures.
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Fig.5 (a)and (b):SEM fractographsofjoinedCV! SiC/SiCComposites testedat800 °C.



IV. Conclusions

It has been demonstrated that ARCJoinT approach can be used to join CVI SiC/SiC composites. These joints maintain their

strength up to 1200°C in air. The joining technology is affordable and robust, and it can be used for the joining of large and

complex shaped components. With further development, it can be adapted to the field repair of silicon carbide-based composite

components.
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